

DN-003-1164002

Seat No.

M. Sc. (Sem. IV) (CBCS) Examination

March - 2022

Mathematics: CMT - 4002

(Integration Theory)

Faculty Code: 003

Subject Code: 1164002

Time : $2\frac{1}{2}$ Hours]

[Total Marks: 70

Instructions: (1) Each question carries 14 marks.

- (2) There are 5 questions in total.
- 1 Answer the following questions.

14

- (A) Define : Counting measure. Also find the counting measure of a set $A = \{\mathbb{R}^- \cup [0, 2022]\} \cap \mathbb{N}$
- (B) Give the example of measure zero set need not be a null set with required justification.
- (C) Give only statement of Jordan Decomposition Theorem.
- (D) Prove that, every measurable subset of a negative set is negative.
- (E) Let X be a locally compact T_2 space and K be a compact G_δ set in then prove that, $K \in B_a(X)$.
- (F) If μ^* is an outer measure on a set X and $\beta \in P(X)$ be such that $\mu^* \beta = 0$ then prove that, β is μ^* measurable.
- (G) Prove that, every compact subset of K of a Hausdorff space is closed.
- 2 Answer any two questions:

14

(A) Let μ be a signed measure on (X, A). Then prove that \exists a positive set A with respect to μ and a negative set B with respect to μ such that $X = A \cup B$, $A \cap B = \phi$.

- (B) Let γ be a signed measure on $(X, A), (\gamma^+, \gamma^-)$ be Jordan decomposition of γ . Prove that, for $E \in A$.
 - (a) E is a positive set with respect to γ if and only if $\gamma^-(E) = 0$.
 - (b) E is a negative set with respect to γ if and only if $\gamma^+(E) = 0$.
 - (c) E is a null set with respect to γ then $|\gamma|(E) = 0$.
- (C) State and prove: Lebesgue Decomposition theorem.
- 3 Answer the following questions:

14

- (A) If μ_1, μ_2 are two measure on a measurable space (X, A) and at least one of them is finite then prove that, $\mu_1 \mu_2$ is a signed measure on (X, A).
- (B) If μ^* is an outer measure on a set X and $B = \{E \subseteq X \mid E \text{ is } \mu^* measurable\}$. Prove that, $B \text{ is } \sigma \text{algebra}$ of subset of X.

OR

3 Answer the following questions:

14

- (A) If X is a countable set and is the counting measure on (X, P(X)). Prove that, $L^p(\mu) \cong l^p, 1 \leq p \leq \infty$.
- (B) Define: Measure absolutely continuous with respect to another measure and mutually singular measures. If (X, A) is a measurable space and γ, μ are signed measures on $(X, A), \gamma \perp \mu \ll \mu$ then prove that, $\gamma = 0$.
- 4 Answer *any two* questions :

14

- (A) State and prove : Radon Nikodym theorem for measure.
- (B) Let C be a semi algebra of subset of a set S and $\mu: C \to [0, \infty]$ be such that
 - (a) $c \in C, = \bigcup_{i=1}^{n} c_i$. prove that, $\eta(c) = \sum_{i=1}^{n} \mu(c_i), \forall n \in \mathbb{N}, c_i \in C$ and $c_i \cap c_j = \emptyset, \forall i, j$
 - (b) $c \in C, c = \bigcup_{n=1}^{\infty} c_n$ prove that, $\mu(c) = \sum_{i=1}^{\infty} \mu(c_n), \forall c_i \in C$ and $c_i \cap c_i = \emptyset, \forall i, j$.
- (C) Let (X, A, μ) , (Y, \mathcal{B}, γ) be σ -finite complete measure space, R be the semi algebra of all measurable rectangles in $X \times Y$ and $E \in R_{\sigma\delta}$ such that $(\mu X \gamma)(E) < \infty$. Prove that, a function $g: X \to [0, \infty]$ defined by $g(x) = \gamma(E_x), \forall x \in X$ is measurable and $\int_x g d\mu = (\mu \times \gamma)(E)$.

- (1) Let X be a topological space. Prove that,
 - (a) For $F \subseteq X$, $X_F : X \to \{0,1\}$ is upper semi continuous if and only if F is closed in X.
 - (b) If $f_a: X \to \{0,1\}$ are upper semi continuous, $\forall a \in \land$ then in $f_{a \in \land} f_a$ is also upper semi continuous on X.
- (2) Let \mathcal{M} be the σ -algebra generated by all legesgue measurable subsets of \mathbb{R} and μ be the lebesgue measure on (\mathbb{R}, m) . Prove that, μ is regular.
- (3) Let X be a locally compact spareable metric space. Prove That, $B_0(X) = B_a(X)$.
- (4) Let X be a locally compact T_2 space. Prove that, $B_a(X)$ is the σ –algebra generated by all compact G_δ sets in X.